Klimaanderung |
1. Rahmen, Kontext, Methoden

Robert Sausen

Institut fur Physik der Atmosphare
Deutsches Zentrum fur Luft- und Raumfahrt
Oberpfaffenhofen

Vorlesung WS 2022/23
LMU Minchen

i DLR




Sausen, Klimaanderung 1.1

N

Technical information

» http://www.pa.op.dIr.de/~RobertSausen/vorlesung/index.html
» Most recent update on the lecture
» Slides of the lecture (with some delay)

= See also LSF https://Isf.verwaltung.uni-muenchen.de/

» Contact: robert.sausen@dIr.de
» Further information:

= www.ipcc.ch
= www.de-ipcc.de
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Statements in the Executive Summary

Working Group | (WGI) of the Intergovernmental Panel on Climate Change (IPCC) assesses
the current evidence on the physical science of climate change, evaluating knowledge gained
from observations, reanalyses, paleoclimate archives and climate model simulations, as well
as physical, chemical and biological climate processes. This chapter sets the scene for the
WGI assessment, placing it in the context of ongoing global and regional changes,
international policy responses, the history of climate science and the evolution from previous
IPCC assessments, including the Special Reports prepared as part of this Assessment Cycle.
Key concepts and methods, relevant recent developments, and the modelling and scenario
framework used in this assessment are presented.

IPCC 2021, Chap. 1
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Statements in the Executive Summary

Framing and Context of the WGI Report (1)

The WGI contribution to the IPCC Sixth Assessment Report (AR6) assesses new
scientific evidence relevant for a world whose climate system is rapidly changing,
overwhelmingly due to human influence. The five IPCC assessment cycles since 1990
have comprehensively and consistently laid out the rapidly accumulating evidence of a
changing climate system, with the Fourth Assessment Report (AR4, 2007) being the first to
conclude that warming of the climate system is unequivocal. Sustained changes have been
documented in all major elements of the climate system, including the atmosphere, land,
cryosphere, biosphere and ocean. Multiple lines of evidence indicate the unprecedented
nature of recent large-scale climatic changes in context of all human history, and that they
represent a millennial-scale commitment for the slow-responding elements of the climate
system, resulting in continued worldwide loss of ice, increase in ocean heat content, sea level
rise and deep ocean acidification. {1.2.1, 1.3, Box 1.2, Appendix 1.A}
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The structure of the AR6 WGI Report
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Large-Scale Information Process Understanding

5 Global Carbon & other
Biogeochemical
Cycles

& Short-Lived Climate
Forcers

REQJET"‘“ Information

2 Changing State of the
Climate System

3 Human Influence on
the Climate System

10 Linking Global to
Regional Climate

11 Weather and Climate
Extreme Events

_ 12 Climate Information
" The Earth's Energy for Risk Assessment
Budget Atas Regional Climate
8 Water Cycle Changes Change

9 QOcean, Cryosphere;
and Sea Level Change

1 Framing, Context, Methods Wi

NI AT

4 Future Global Climate

Figure 1.1 | The structure of the AR6 WGI Report. Shown are the three pillars of

the AR6 WGI, its relation to the WGII and WGIII contributions, and the cross-working-

group ARG Synthesis Report (SYR).
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Main relations between AR5 WGI and AR6 WGI chapters

AR5 WGI Chapter Related information in AR6 WGI

AR5 WGI Chapter : :
s categories P 1. Introduction —> [Framing Chapter 1 |

. Linking Globat fo
Ragional Cimate

2. Observations: Atmosphere & Surface

vl | | 2 Observatons: Atmosphere & Surace | preeermemprsnycmemes
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Process 6. Carbon & Other Biogeochemical Cycles ~ | Process chapter 5 |
Understanding 7. Clouds & Aerosols Reorganised in process Chapters

| (Aerosols in 6; Clouds in 8; Radiative
8. Anthropogenic & Natural Radiative Forcing i forcing in 7)

Figure 1.2 | Main relations between AR5 WGI and AR6 WGI chapters. The left-hand column shows the AR5 WG chapter categories. The central column lists the ARS

From Forcing to
Attribution of + 9. Evaluation of Climate Models

WGl chapters, with the colour code indicating their relation to the ARG WGI structure shown in Figure 1.1: Large-Scale Information (purple), Process Understanding {gold),
Regional Information (light blue) and Whole-Report Information (dark blue). ARS WG chapters depicted in white have their topics distributed over multiple AR6 WG| chapters

and categories. The right-hand column explains where to find related infermation in the ARG WG| report.

Uiito £ tiongs 10. Detection & Attribution of Climate Change | ———
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Statements in the Executive Summary

Framing and Context of the WGI Report (2)

Since the IPCC Fifth Assessment Report (ARS5), the international policy context of IPCC
reports has changed. The UN Framework Convention on Climate Change (UNFCCC, 1992)
has the overarching objective of preventing ‘dangerous anthropogenic interference with the
climate system’. Responding to that objective, the Paris Agreement (2015) established the
long-term goals of ‘holding the increase in global average temperature to well below 2°C
above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C
above pre-industrial levels’ and of achieving ‘a balance between anthropogenic emissions by
sources and removals by sinks of greenhouse gases in the second half of this century’. Parties
to the Agreement have submitted Nationally Determined Contributions (NDCs) indicating their
planned mitigation and adaptation strategies. However, the NDCs submitted as of 2020 are
insufficient to reduce greenhouse gas emission enough to be consistent with trajectories

limiting global warming to well below 2°C above pre-industrial levels (high confidence). {1.1,
1.2}
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Characterizing understanding and uncertainty in assessment findings

Evaluation and communication of degree of certainty in ARG findings
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Assessed fact
It is unequivocal that human influence has warmed the
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The tast lime global suriace tempersture was sustained at
er above 25°C higher han 1850-1900 was cver 3 milion
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Box 1.1, Figure 1 | The IPCC AR6 approach for characterizing understanding and uncertainty in assessment findings. This diagram illustrates the
step-by-step process authors use to evaluate and communicate the state of knowledge in their assessment (Mastrandrea et al., 2010). Authors present evidence/
agreement, confidence, or likelihood terms with assessment conclusions, communicating their expert judgments accordingly. Example conclusions drawn from Report
are presented in the box at the bottom of the figure. Figure adapted from Mach et al. (2017) .
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Evaluation and communication of degree of certainty in ARG findings

1. What evidence exists?
D Observations
é& Experiments
0 Theory
]lu,, Statistics

@3 Models

v

Type Quality
Quantity Consistency
and scientific agreement

v

3. Sufficient evidence and
agreement fo evaluate
confidence?

|
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Examples of assessments

Assessed evidence and agreement
Past projections of global temperature and the pattem of
warming are broadly consistent with subsequent
observations (limiled evidence, high agreement)
{1.36}.

Assessed fact

It is unequivocal that human influence has warmed the
atmosphere, ocean and land. Widespread and rapid
changes in the atmosphere, ocean, cryosphere and
biosphere have occurred. {SPM.A.1)

—> 4, Evaluate confidence based on
evidence and agreement

Agreement ———
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st avio

Evidence (type, amount, quality, consistency] ——————

E Statement of fact

Very high confidence
High confidence
Medium confidence
Low confidence

o—— Very low confidence

5. Sufficient confidence and quantitative or

probabilistic evidence?

Assessed confidence
The probability of low-likelihood, high impact cutcomes
increases with higher olobal warming levels (high
confidence). {SPM.C.3.2}

The last time global surface temperature was sustained at
or above 2.5°C higher than 1850-1300 was over 3 million
years ago (medium confidence). {SPM.B.1.1}

There is low confidence in long-term (multi-decadal to

centennial) trends in the frequency of all-category tropical
cyclones. {SPM.A.3.4)
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Assessed likelihood
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heatwaves) have become more frequent and more
intense across most land regions since the 1950s...
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Based on multiple lines of evidence, the very likely
range of equilibrium climate sensitivity is between 2°C
(high confidence) and 5°C (medium confidence). The
ARG assessed best estimate is 3°C with a likely range
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@ Observations Examples of assessments
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- Past projections of global temperature and the pattern of
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SCJ Models
v _ Assessed fact
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High agreement

Robust evidence Assessed confidence

The probability of low-likelihood, high impact outcomes
increases with higher global warming levels (high
confidence). {SPM.C.3.2}

4. Evaluate confidence based on -
ot s evidence and agreement

Low agreement k Low agreement
Limited evidence ' Robust evidence
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=
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or above 2.5°C higher than 1850-1900 was over 3 million
years ago (medium confidence). {SPM.B.1.1}
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High confidence centennial) trends in the frequency of all-category tropical
cyclones. {SPM.A.3.4}
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Probability

> 6. Evaluate likelihood

Likelihood Ranges

Likelihood outcome

Certain/fact
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More likely than not

About as likely as not
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0-33%
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ARy ¥ FIOTEET
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Assessed likelihood

It is virtually certain that hot extremes (including
heatwaves) have become more frequent and more
intense across most land regions since the 1950s...
{SPM.A.3.1}

Based on multiple lines of evidence, the very likely
range of equilibrium climate sensitivity is between 2°C
(high confidence) and 5°C (medium confidence). The
ARG assessed best estimate is 3°C with a likely range
of 2.5°C to 4°C (high confidence)... {SPM.A.4.4}
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Evaluation and communication of degree of certainty in AR findings
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Statements in the Executive Summary

Framing and Context of the WGI Report (3)

This report provides information of potential relevance to the 2023 global stocktake.
The 5-yearly stocktakes called for in the Paris Agreement will evaluate alignment among the
Agreement’s long-term goals, its means of implementation and support, and evolving global
efforts in climate change mitigation (efforts to limit climate change) and adaptation (efforts to
adapt to changes that cannot be avoided). In this context, WG| assesses, among other topics,
remaining cumulative carbon emission budgets for a range of global warming levels, effects of
long-lived and short-lived climate forcers, projected changes in sea level and extreme events,
and attribution to anthropogenic climate change. {Cross-Chapter Box 1.1}

P {
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Statements in the Executive Summary

Framing and Context of the WGI Report (4)

Understanding of the fundamental features of the climate system is robust and well
established. Scientists in the 19th-century identified the major natural factors influencing the
climate system. They also hypothesized the potential for anthropogenic climate change due to
carbon dioxide (CO,) emitted by fossil fuel combustion. The principal natural drivers of climate
change, including changes in incoming solar volcanic activity, orbital cycles, and changes in
global biogeochemical cycles, have been studied systematically since the early 20th century.
Other major anthropogenic drivers, such as atmospheric aerosols (fine solid particles or liquid
droplets), land-use change and non-CO, greenhouse gases, were identified by the 1970s.
Since systematic scientific assessments began in the 1970s, the influence of human activity
on the warming of the climate system has evolved from theory to established fact. Past
projections of global surface temperature and the pattern of warming are broadly consistent
with subsequent observations (limited evidence, high agreement), especially when accounting
for the difference in radiative forcing scenarios used for making projections and the radiative
forcings that actually occurred. {1.3.1 - 1.3.6}
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Climate science milestones between 1817-2021

1817
Hurrbiakd first
isatham mea

Frose supgests
presnhiouse gas

Figure 1.6 | Climate science milestones, between 1817 and 2021. Top: Milestones in observations. Middle: Curves of global surface air temperature (GMST) anomaly
relative to 1850—-1900, using HadCRUTS (Morice et al., 2021); atmospheric CO, concentrations from Antarctic ice cores (Liithi et al., 2008; Bereiter et al.,, 2015); direct air

measurements from 1957 onwards (see Figure 1.4 for details; Tans and Keeling, 2020). Bottom: Milestones in scientific understanding of the CO,-enhanced greenhouse effect.
Further details on each milestone are available in Section 1.3, and in Chapter 1 of AR4 (Le Treut et al., 2007).
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Statements in the Executive Summary

Framing and Context of the WGI Report (5)

Global surface temperatures increased by about 0.1°C (likely range —0.1°C to +0.3°C,
medium confidence) between the period around 1750 and the 1850-1900 period, with
anthropogenic factors responsible for a warming of 0.0°C — 0.2°C (likely range, medium
confidence). This assessed change in temperature before 1850—-1900 is not included in the
ARG assessment of global warming to date, to ensure consistency with previous IPCC
assessment reports, and because of the lower confidence in the estimate. There was likely a
net anthropogenic forcing of 0.0 — 0.3 Wm-2in 1850-1900 relative to 1750 (medium
confidence), with radiative forcing from increases in atmospheric greenhouse gas
concentrations being partially offset by anthropogenic aerosol emissions and land-use change.
Net radiative forcing from solar and volcanic activity is estimated to be smaller than

+ 0.1 Wm-2 for the same period. {Cross Chapter Box 1.2, 1.4.1, Cross Chapter Box 2.3}
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Figure 1.4 | Changes are occurring throughout the climate system. Left: Main realms of the climate system: atmosphere, biosphere, cryosphere and ocean.
Right: Six key indicators of ongoing changes since 1850, or the start of the observational or assessed record, through 2018, Each stripe indicates the global (except for
precipitation which shows two latitude band means), annual mean anomaly for a single year, relative to a multi-year baseline (except for CO2 concentration and glacier mass
loss, which are absolute values). Grey indicates that data are not available. Datasets and baselines used are: (i) CO2: Antarctic ice cores (Lithi et al, 2008; Bereiter et al.,
2015) and direct air measurements (Tans and Keeling, 2020) (see Figure 1.5 for details); (i) precipitation: Global Precipitation Climatology Centre (GPCC) V8 (updated from
Becker et al,, 2013), baseline 1961-1990 using land areas only with latitude bands 33°N-66°N and 15°S-30°S; (iii) glacier mass loss: Zemp et al. (2019); (iv) global surface
air temperature (GMST): HadCRUT5 (Morice et al., 2021), baseline 1961-1990; (v) sea level change: (Dangendorf et al., 2019), baseline 1900-1929; (vi) ocean heat content

(model—observation hybrid): Zanna et al. (2019), baseline 1961-1990. Further details on data sources and processing are available in the chapter data table (Table 1.SM.1).
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Abbildung 1: Jahresmittel der Temperatur am Hohenpeifenberg (blaue Kurven), sowie iiber Deutschland
(rosa Kurven, um 1.7°C nach unten verschoben). Diinne Linien: Jahresmittel. Dicke Linien: gleitendes Mittel
iiber 11 Jahre. Dicke gestrichelte Linien: langjdhrige Hohenpeifienberger Mittel der Jahre 1781 bis 1960
(6°C), 1990 bis 2020 (7.7°C) und 2015 bis 2020 (8.6°C). Zum Vergleich sind auch wel Ti aturano
malien der Landoberfliche gezeigt (CRUTEMS und GISS, 6.45°C nach oben verschoben). GISS liefert zu-
sétzlich die wefhvefre Land- und Meeresoberﬂ.ichen Temperaturanomalie (+S5T). Weitere Informationen
siehe b bseiten, sowie DWD Mitteilung vom Januar 2020.
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Figure 1.5 | Long-term context of anthropogenic climate change based on selected paleoclimatic reconstructions over the past 800,000 years (800 kyr)
for three key indicators: atmospheric CO, concentrations, global mean surface temperature (GMST), and global mean sea level (GMSL).

Figure 1.5 (continued): (a) Measurements of CO; in air enclosed in Antarctic ice cores (Liathi et al, 2008; Bereiter et al, 2015 |a compilation]; uncertainty
+1.3 ppm; see Sections 2.2.3 and 5.1.2 for an assessment) and direct air measurements (Tans and Keeling, 2020; uncertainty +0.12 ppm). Projected CO concentrations
for five Shared Socio-economic Pathways (S5P) scenarios are indicated by dots on the right-hand side of each panel {grey background; (Meinshausen et al., 2020; 55Ps are
described in Section 1.6). (b) Reconstruction of GMST from marine paleoclimate proxies (light-grey line: Snyder (2016); dark grey line: Hansen et al. (2013); see Section 2.3.1
for an assessment). Observed and reconstructed temperature changes since 1850 are the ARG assessed mean (referenced to 1850—-1900; Box T5.3; 2.3.1.1); dots/whiskers
on the right-hand panels (grey background) indicate the projected mean and ranges of warming derived from Coupled Maodel Intercomparison Project Phase & (CMIP6&) SSP-
based (2081-2100) and Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC7; 2300) simulations (Tables 4.5 and 4.9). (c) Sea level changes
reconstructed from a stack of oxygen isotope measurements on seven ocean sediment cores (Spratt and Lisiecki, 2016; see Chapter 2, Section 2.3.3.3 and Chapter 9,
Section 9.6.2 for an assessment). The sea level record from 1850—1900 is from Kopp et al. (2016), while the 20th century record is an updated ensemble estimate of GMSL
change (Palmer et al., 2021; Sections 2.3.3.3 and 9.6.1.1). Dots/whiskers on the right-hand panels of the figure (grey background) indicate the projected median and ranges
derived from SSP-based simulations (2081—2100: Table 9.9; 2300: Section 9.6.3.5). Best estimates (dots) and uncertainties (whiskers), as assessed in Chapter 2, are included
in the left and middle panels for each of the three indicators and selected paleo-reference periods used in this report (CO,: Table 2.1; GMST: Section 2.3.1.1 and Cross-Chapter
Box 2.3, Table 1; GMSL: Sections 2.3.3.3 and 9.6.2. See also Cross-Chapter Box 2.1). Selected paleo-reference periods: LIG — Last Interglacial; LGM — Last Glacial Maximum;
MH — mid-Holocene (Cross-Chapter Box 2.1, Table 1). The non-labelled best estimate in panel (c) corresponds to the sea level high-stand during Marine Isotope Stage 11, about
410 ka (410,000 years ago; Section 9.6.2). Further details on data sources and processing are available in the chapter data table (Table 1.SM.1).
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Changes in global land temperature (60°S-60°N) relative to a 1901-1930 baseline (°C)
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{b) Comparing Callendar (1938, 1961) with CRUTEMS (Osborn et al. 2021)
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Figure 1.8 | G.S. Callendar’s estimates of global land temperature variations and their possible causes. (a) The original figure from Callendar (1938), using
measurements from 147 surface stations for 18801935, showing: (top) ten-year moving departures from the mean of 1901-1930 (°C), with the dashed line representing his
estimate of the 'CO; effect’ on temperature rise, and (bottom) annual departures from the 1901-1930 mean (°C). (b) Comparing the estimates of global land (60°5—-60°N)
temperatures tabulated in Callendar (1938, 1961) with a modern reconstruction (CRUTEMS, Osborn et al., 2021) for the same period, following Hawkins and Jones (2013).
Further details on data sources and processing are available in the chapter data table (Table 1.5M.1).
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Range of projected temperature change for 1990-2030 for various
regions defined in IPCC First Assessment Report (FAR)
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Figure 1.10 | Range of projected temperature change for 1990-2030 for various regions defined in IPCC First Assessment Report (FAR).The left-hand
panel shows the FAR projections (IPCC, 1990a) for southern Europe, with the darker blue shade representing the range of projected change given for the best estimate of 1.8°C
global warming by 2030 compared with pre-industrial levels, and the fainter blue shade showing the range scaled by —30% to +50% for lower and higher estimates of global
warming. Blue lines show the regionally averaged observations from five global temperature gridded datasets, and blue dashed lines show the linear trends in those datasets for
19902020 extrapolated to 2030. Observed datasets are: HadCRUTS, Cowtan and Way, GISTEMP, Berkeley Earth and NOAA GlobalTemp. The inset map shows the definition
of the FAR regions used. The right-hand panel shows projected temperature changes by 2030 for the various FAR regions, compared to the extrapolated observational trends,
following Grose et al. (2017). Further details on data sources and processing are available in the chapter data table (Table 1.SM.1).
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Changes in radiative forcing from 1750 to 2019
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Cross-Chapter Box 1.2, Figure 1 | Changes in radiative forcing from 1750-2019. The radiative forcing estimates from the AR6 emulator (Cross-Chapter
Box 7.1) are split into GHG, other anthropogenic (mainly aerosols and land use) and natural forcings, with the average over the 1850—-1900 baseline shown for each.
Further details on data sources and processing are available in the chapter data table (Table 1.5M.1).
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Statements in the Executive Summary

Framing and Context of the WGI Report (6)

Natural climate variability can temporarily obscure or intensify anthropogenic climate
change on decadal time scales, especially in regions with large internal interannual-to-
decadal variability. At the current level of global warming, an observed signal of
temperature change relative to the 1850-1900 baseline has emerged above the levels of
background variability over virtually all land regions (high confidence). Both the rate of
long-term change and the amplitude of interannual (year-to-year) variability differ from global
to regional to local scales, between regions and across climate variables, thus influencing
when changes become apparent. Tropical regions have experienced less warming than most
others, but also exhibit smaller interannual variations in temperature. Accordingly, the signal of
change is more apparent in tropical regions than in regions with greater warming but larger
interannual variations (high confidence). {1.4.2, FAQ1.2}
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Simulated changes in various climate indicators under historical
and RCP4.5 scenarios using the MPI ESM Grand Ensemble

Natural variations can temporarily mask or enhance anthropogenic changes in climate
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Figure 1.13 | Simulated changes in various climate indicators under historical and RCP4.5 scenarios using the MPI ESM Grand Ensemble. The grey shading
shows the 5-95% range from the 100-member ensemble. The coloured lines represent individual example ensemble members, with linear trends for the 2011-2021 period
indicated by the dashed lines. Changes in ocean heat content (OHC) over the top 2000 m represents the integrated signal of global warming (left). The top row shows surface
air temperature-related indicators (annual GSAT change and UK summer temperatures) and the bottom row shows Arctic sea ice-related indicators (annual ice volume and
September sea ice extent). For smaller regions and for shorter time-period averages the variability increases and simulated short-term trends can temporarily mask or enhance
anthropogenic changes in climate. Data from Maher et al. (2019). Further details on data sources and processing are available in the chapter data table (Table 1.5M.1).
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Natural variations can temporarily mask or enhance anthropogenic changes in climate

Simulated examples of different possible climate
trajectories.

Natural climate variations can temporarily mask or
enhance anthropogenic climatic changes over a
decade or more, especially for smaller regions and
shorter averaging periods.
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Changes in tropopause height and surface temperature
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Figure3: Filtered global-mean monthly-mean near-surface temperature (panel A) and p z;r (panel B) in the ECHAM GSDIO and control
simulations. Data were smoothed with a 60-month moving average window; bold lines are the filtered values. The grey envelope denotes
the £26 ‘noise envelope’ in the control run data. Dashed vertical lines indicate the times at which the GSDIO surface temperature and p, gr
data separate from (and remain outside) the noise envelope. For display purposes, only the first 191 years of the 300-year control run are
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Observed variations in regional temperatures since 1850

FAQ 1.2: Where is climate change most apparent?
Temperature changes are most apparent in regions with smaller natural variations.

L] Estimation of:
2 standard deviations of natural year-to-year variations
- 1 standard deviation of natural year-to-year variations
High latitudes (e.g. mid-North America) °c Low latitudes (e.g. Tropical South America)
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FAQ 1.2, Figure 1 | Observed variations in regional temperatures since 1850 (data from Berkeley Earth). Regions in high latitudes, such as
mid-North America (40°N-64°N, 140°W-60°W, left), have warmed by a larger amount than regions at lower latitudes, such as tropical South America
(10°S—10°N, 84°W-16°W, right), but the natural variations are also much larger at high latitudes (darker and lighter shading represents 1 and 2 standard
deviations, respectively, of natural year-to-year variations). The signal of observed temperature change emerged earlier in tropical South America than mid-
North America even though the changes were of a smaller magnitude. (Note that those regions were chosen because of the longer length of their observational

! record; see Figure 1.14 for more regions).
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Observed variations in regional temperatures since 1850

FAQ 1.2: Where is climate change most apparent?
Temperature changes are most apparent in regions with smaller natural variations.

- Estimation of:
2 standard deviations of natural year-to-year variations
- 1 standard deviation of natural year-to-year variations
High latitudes (e.g. mid-North America) . Low latitudes (e.g. Tropical South America)
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The observed emergence of changes in temperature.

Observed changes in temperature have emerged in most regions
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Figure 1.14 | The observed emergence of changes in temperature. (Top left) The total change in temperature estimated for 2020 relative to 1850-1900 (following
Hawkins et al., 2020), showing the largest warming occurring in the Arctic. (Top right) The amplitude of estimated year-to-year variations in temperature. (Middle left)
The ratio of the observed total change in temperature and the amplitude of temperature variability (the 'signal-to-noise (S/N) ratio’), showing that the warming is most apparent
in the tropical regions (also see FAQ 1.2). (Middle right) The global warming level at which the change in local temperature becomes larger than the local year-to-year
variability. The bottom panels show time series of observed annual mean surface air temperatures over land in various example regions, as indicated by the boxes in the top-left
panel. The 1 and 2 standard deviations (o) of estimated year-to-year variations for that region are shown by the pink shaded bands. Observed temperature data from Berkeley
Earth (Rohde and Hausfather, 2020). Further details on data sources and processing are available in the chapter data table (Table 1.SM.1).
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Observed changes in temperature have emerged in most regions
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The ‘cascade of uncertainties’ in CMIP6 projections

Cascade of uncertainties in climate projections
Different sources of uncertainty dominate the total uncertainty in projections for different variables, regions and time periods
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Figure 1.15 | The ‘cascade of uncertainties’ in CMIP6 projections. Changes in: GSAT (left); Northern South America temperature (middle); and East Asia summer
(June—July—August, JJA) precipitation (right). These are shown for two time periods: 2041-2060 (top) and 2081-2100 (bottom). The SSP-radiative forcing combination is
indicated at the top of each cascade at the value of the multi-model mean for each scenario. This branches downwards to show the ensemble mean for each model, and further
branches into the individual ensemble members, although often only a single member is available. These diagrams highlight the relative importance of different sources of
uncertainty in climate projections, which varies for different time periods, regions and climate variables. See Section 1.4.5 for the definition of the regions used. Further details
on data sources and processing are available in the chapter data table (Table 1.5M.1).
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Statements in the Executive Summary

Framing and Context of the WGI Report (7)

The AR6 has adopted a unified framework of climate risk, supported by an increased
focus in WGI on low-likelihood, high-impact events. Systematic risk framing is intended to
aid the formulation of effective responses to the challenges posed by current and future
climatic changes and to better inform risk assessment and decision-making. ARG also makes
use of the ‘storylines’ approach, which contributes to building a robust and comprehensive
picture of climate information, allows a more flexible consideration and communication of risk,

and can explicitly address low-likelihood, high-impact events. {1.1.2, 1.4.4, Cross-Chapter Box
1.3}
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lllustrating concepts of low-likelihood scenarios
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Figure 1.16 | lllustrating concepts of low-likelihood outcomes. Left: schematic likelihood distribution consistent with the IPCC AR6 assessments that equilibrium
climate sensitivity (ECS) is /ikely in the range 2.5°C to 4.0°C, and very likely between 2.0°C and 5.0°C (Chapter 7). ECS values outside the assessed very likely range are
designated low-likelihood outcomes in this example (light grey). Middle and right-hand columns: additional risks due to climate change for 2020-2090 using the Reasons
For Concern (RFCs, see IPCC, 2014b), specifically RFC1 describing the risks to unique and threatened systems and RFC3 describing risks from the distribution of impacts (O'Neill
et al., 2017b; Zommers et al.,, 2020). The projected changes of GSAT used are the 95%, median and 5% assessed ranges from Chapter 4 for each SSP (top, middle and bottom);
these are designated High ECS, Mid-range ECS and Low ECS respectively. The ‘burning-ember’ risk spectrum of graduated colours is usually associated with levels of committed
GSAT change; instead, this illustration associates the risk spectrum with the GSAT temperature reached in each year from 2020 to 2090. Note that this illustration does not
include the vulnerability aspect of each SSP scenario. Further details on data so
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lllustration of two types of tipping points: noise-induced and bifurcation
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Figure 1.17 | lllustration of two types of tipping points: noise-induced (a, b) and bifurcation (c, d). (a) and (c) are example time-series (coloured lines) through
the tipping point, with solid-black lines indicating stable climate states (e.g., low or high rainfall) and dashed lines representing the boundary between stable states. (b) and
(d) are stability landscapes, which provide an intuitive understanding of the different types of tipping point. The ‘valleys' represent different climate states the system can occupy,
with ‘hilltops’ separating the stable states. The resilience of a climate state is implied by the depth of the valley. The current state of the system is represented by a ball. Both
scenarios assume that the ball starts in the left-hand valley (dashed-black lines) and then through different mechanisms dependent on the type of tipping transitions to the
right-hand valley (coloured lines). Noise-induced tipping events (a, b), for instance drought events causing sudden dieback of the Amazon rainforest, develop from fluctuations
within the system. The stability landscape in this scenario remains fixed and stationary. A series of perturbations in the same direction, or one large perturbation, are required to
force the system over the hilltop and into the alternative stable state. Bifurcation tipping events (c, d), such as a collapse of the thermohaline circulation in the Atlantic Ocean
under climate change, occur when a critical level in the forcing is reached. Here the stability landscape is subjected to a change in shape. Under gradual anthropogenic forcing
the left-hand valley begins to shallow and eventually vanishes at the tipping point, forcing the system to transition to the right-hand valley.
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Statements in the Executive Summary

Framing and Context of the WGI Report (8)

The construction of climate change information and communication of scientific
understanding are influenced by the values of the producers, the users and their
broader audiences. Scientific knowledge interacts with pre-existing conceptions of weather
and climate, including values and beliefs stemming from ethnic or national identity, traditions,
religion or lived relationships to land and sea (high confidence). Science has values of its own,
including objectivity, openness and evidence-based thinking. Social values may guide certain

choices made during the construction, assessment and communication of information (high
confidence). {1.2.3, Box 1.1}
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Choice of baseline matters
when comparing observations and model simulations

Global temperature variations and baseline choices
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Figure 1.11 | Choice of baseline matters when comparing observations and model simulations. Global mean surface air temperature (GSAT, grey) from a range of
CMIP® historical simulations (1850-2014; 25 models) and SSP1-2.6 (2015-2100) using absolute values (top) and anomalies relative to two different baselines: 18501900
(middle) and 1995-2014 (bottom). An estimate of GSAT from a reanalysis (ERA-5, orange, 1979-2020) and an observation-based estimate of global mean surface air
temperature (GMST) (Berkeley Earth, black, 1850-2020) are shown, along with the mean GSAT for 1961-1990 estimated by Jones et al. (1999), light blue shading (14.0°C
+ 0.5°C). Using the more recent baseline (bottom) allows the inclusion of datasets which do not include the periods of older baselines. The middle and bottom panels have
scales which are the same size but offset. Further details on data sources and processing are available in the chapter data table (Table 1.5M.1).
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Statements in the Executive Summary

Data, Tools and Methods Used across the WGI Report (1)

Capabilities for observing the physical climate system have continued to improve and
expand overall, but some reductions in observational capacity are also evident (high
confidence). Improvements are particularly evident in ocean observing networks and remote-
sensing systems, and in paleoclimate reconstructions from proxy archives. However, some
climate-relevant observations have been interrupted by the discontinuation of surface stations
and radiosonde launches, and delays in the digitisation of records. Further reductions are
expected to result from the COVID-19 pandemic. In addition, paleoclimate archives such as
mid-latitude and tropical glaciers as well as modern natural archives used for calibration (e.g.,

corals and trees) are rapidly disappearing owing to a host of pressures, including increasing
temperatures (high confidence). {1.5.1}

IPCC 2021, Chap. 1
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Temporal coverage of selected instrumental climate observations
(top) and selected paleoclimate archives (bottom)
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Figure 1.7 | Schematic of temporal coverage of (a) selected instrumental climate observations and (b) selected paleoclimate archives. The satellite era

began in 1979 CE. The width of the taper gives an indication of the amount of available records.
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Statements in the Executive Summary

Data, Tools and Methods Used across the WGI Report (2)

Reanalyses have improved since AR5 and are increasingly used as a line of evidence in
assessments of the state and evolution of the climate system (high confidence).
Reanalyses, where atmosphere or ocean forecast models are constrained by historical
observational data to create a climate record of the past, provide consistency across multiple
physical quantities and information about variables and locations that are not directly
observed. Since AR5, new reanalyses have been developed with various combinations of
increased resolution, extended records, more consistent data assimilation, estimation of
uncertainty arising from the range of initial conditions, and an improved representation of the
ocean. While noting their remaining limitations, the WGI report uses the most recent

generation of reanalysis products alongside more standard observation-based datasets.
{1.5.2, Annex 1}
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Statements in the Executive Summary

Data, Tools and Methods Used across the WGI Report (3)

Since AR5, new techniques have provided greater confidence in attributing changes in
climate extremes to climate change. Attribution is the process of evaluating the relative
contributions of multiple causal factors to an observed change or event. This includes the
attribution of the causal factors of changes in physical or biogeochemical weather or climate
variables (e.g., temperature or atmospheric CO,) as done in, or of the impacts of these
changes on natural and human systems (e.g., infrastructure damage or agricultural
productivity), as done in WGII. Attributed causes include human activities (such as emissions
of greenhouse gases and aerosols, or land-use change), and changes in other aspects of the
climate, or natural or human systems. {Cross-WG Box 1.1}
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Statements in the Executive Summary
Data, Tools and Methods Used across the WGI Report (4)

The latest generation of complex climate models has an improved representation of
physical processes, and a wider range of Earth system models now represent
biogeochemical cycles. Since the AR5, higher-resolution models that better capture
smaller-scale processes and extreme events have become available. Key model
intercomparisons supporting this assessment include the Coupled Model Intercomparison
Project Phase 6 (CMIP6) and the Coordinated Regional Climate Downscaling Experiment
(CORDEX), for global and regional models respectively. Results using CMIP Phase 5 (CMIPS)
simulations are also assessed. Since the AR5, large ensemble simulations, where individual
models perform multiple simulations with the same climate forcings, are increasingly used to
inform understanding of the relative roles of internal variability and forced change in the
climate system, especially on regional scales. The broader availability of ensemble model
simulations has contributed to better estimations of uncertainty in projections of future change
(high confidence). A broad set of simplified climate models is assessed and used as emulators
to transfer climate information across research communities, such as for evaluating impacts or
mitigation pathways consistent with certain levels of future warming. {1.4.2, 1.5.3, 1.5.4,
Cross-chapter Box 30 7.1}
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A world map showing the increased diversity of modelling centres
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contributing to CMIP and CORDEX
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Figure 1.20 | World map showing the increased diversity of modelling centres contributing to CMIP and CORDEX. Climate models are often developed by
international consortia. One such consortium, EC-Earth, is shown as an example under the label 8 EU Cities (involving SMHI, Sweden; KNMI, The Netherlands; DMI, Denmark;
AEMET, Spain; Met Eireann, Ireland; CNR-ISAC, Italy; Instituto de Meteorologia, Portugal; and FMI, Finland). There are too many such collaborations to display all of them on
this map. More complete information about institutions contributing to CORDEX and CMIP6 is found in Annex II.
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Figure 1.22 | Structure of CMIP6, the 6th phase of the Coupled Model
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Evaluation and Characterization of Klima) and historical experiments that all
participating models must perform. The outer circles show the topics covered by the Carb‘lon' Scenarios
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Resolution of the atmospheric and oceanic components of global
climate models participating in CMIP5, CMIP6, and HighResMIP
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Figure 1.19 | Resolution of the atmospheric and oceanic components of global climate models participating in CMIP5, CMIP6 and HighResMIP:
(a, b) horizontal resolution (km), and (c, d) number of vertical levels. Darker-colour circles indicate high-top models (in which the top of the atmosphere is above
50 km). The crosses are the median values. These models are documented in Annex II. Note that duplicated models in @ modelling group are counted as one entry when their
horizontal and vertical resolutions are the same. For HighResMIP, one atmosphere—ocean coupled model with the highest resolution from each modelling group is used. The
horizontal resolution (rounded to 10 km) is the square root of the surface area of the Earth divided by the number of grid points, or the area of the ocean surface divided by the
number of surface ocean grid points, for the atmosphere and ocean, respectively.
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lllustration of common types of model ensemble,
simulating the time evolution of a quantity Q

(a) Multi-model ensemble (MME)
One simulation of the time evolution of Q per mode!, with internal variabiliy
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Figure 1.21|lllustration of common types of model ensemble, simulating the
time evolution of a quantity Q (such as global mean surface temperature).
(@) Multi-model ensemble, where each model has its own realization of the processes
affecting Q, and its own internal variability around the baseline value (dashed line).
The multi-model mean (black) is commonly taken as the ensemble average. (b) Initial
condition ensemble, where several realizations from a single model are compared.
These differ only by minute (‘micro) perturbations to the initial conditions of the
simulation, such that over time, internal variability will progress differently in each
ensemble member. (c) Perturbed physics ensemble, which also compares realizations
from a single model, but where one or more internal parameters that may affect
the simulations of Q are systematically changed to allow for a quantification of the
impact of those quantities on the model results. Additionally, each parameter set may
be taken as the starting point for an initial condition ensemble. In this figure, each set
has three ensemble members.
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Figure 1.21|lllustration of common types of model ensemble, simulating the
time evolution of a quantity Q (such as global mean surface temperature).
(@) Multi-model ensemble, where each model has its own realization of the processes
affecting Q, and its own internal variability around the baseline value (dashed line).
The multi-model mean (black) is commonly taken as the ensemble average. (b) Initial
condition ensemble, where several realizations from a single model are compared.
These differ only by minute (‘micro) perturbations to the initial conditions of the
simulation, such that over time, internal variability will progress differently in each
ensemble member. (c) Perturbed physics ensemble, which also compares realizations
from a single model, but where one or more internal parameters that may affect
the simulations of Q are systematically changed to allow for a quantification of the
impact of those quantities on the model results. Additionally, each parameter set may
be taken as the starting point for an initial condition ensemble. In this figure, each set
has three ensemble members.
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Statements in the Executive Summary

Data, Tools and Methods Used across the WGI Report (5)

Assessments of future climate change are integrated within and across the three IPCC
Working Groups through the use of three core components: scenarios, global warming
levels, and the relationship between cumulative carbon emissions and global warming.
Scenarios have a long history in the IPCC as a method for systematically examining possible
futures. A new set of scenarios, derived from the Shared Socio-economic Pathways (SSPs), is
used to synthesize knowledge across the physical sciences, impact, and adaptation and
mitigation research. The core set of SSP scenarios used in the WGI report, SSP1-1.9, SSP1-
2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, cover a broad range of emission pathways, including
new low-emissions pathways. The feasibility or likelihood of individual scenarios is not part of
this assessment, which focuses on the climate response to possible, prescribed emission
futures. Levels of global surface temperature change (global warming levels), which are
closely related to a range of hazards and regional climate impacts, also serve as reference
points within and across IPCC Working Groups. Cumulative carbon emissions, which have a
nearly linear relationship to increases in global surface temperature, are also used. {1.6.1-
1.6.4, Cross-Chapter Box 1.5, Cross-Chapter Box 11.1}
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A simplified illustration of the scenario generation
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Figure 1.27 | A simplified illustration of the scenario generation process, involving the scientific communities represented in the three IPCC Working
Groups. The circular set of arrows at the top indicates the main set of models and workflows used in the scenario generation process, with the lower level indicating the datasets.
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Comparison of the range of fossil and industrial CO, emissions from
scenarios used in previous assessments up to ARG6.

Figure 1.28 | Comparison of the range of fossil fuel and industrial CO;
emissions from scenarios used in previous assessments up to AR6. Previous
assessments are the 1592 scenarios from 1992 (top), the Special Report on Emissions
Scenarios (SRES) scenarios from the year 2000 (second panel), the Representative
Concentration Pathway (RCP) scenarios designed around 2010 (third panel) and
the Shared Socio-economic Pathways (SSP) scenarios (fourth panel). In addition,
historical emissions are shown (black line; Figure 5.5); a more complete set of
scenarios is assessed in SR1.5 (bottom); (Huppmann et al., 2018). Further details on
data sources and processing are available in the chapter data table (Table 1.SM.1).
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The Dimensions of Integration across Chapters and Working Groups
in the IPCC ARG assessment

® Reasons for Concern related to
global-mean temperatures
N
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2. Global warming levels

Cumulative CO, emissio
3. Cumulative CO, emissions

Figure 1.24 | The dimensions of integration across chapters and Working Groups in the IPCC AR6 Assessment. This Report adopts three explicit dimensions of
integration to integrate knowledge across chapters and Working Groups. The first dimension is scenarios; the second dimension is global mean warming levels relative to pre-
industrial levels; and the third dimension is cumulative CO, emissions. For the scenarios, illustrative 2100 end-points are also indicated (white circles). Further details on data
sources and processing are available in the chapter data table (Table 1.5M.1).
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Sample elements of climate understanding, observations and models
as assessed in the IPCC First Assessment Report (1990) and Sixth

Assessment Report (2021)

Understanding

Human influence on climate

Enany tudgel

Sncttha we

Frws masdul b

¢

'1"-:‘;‘\'1

FAQ 1.1, Figure 1 | Sample elements of climate understanding, observations and models as assessed in the IPCC First Assessment Report
(1990) and Sixth Assessment Report (2021). Many other advances since 1990, such as key aspects of theoretical understanding, geological records and
attribution of change to human influence, are not included in this figure because they are not readily represented in this simple format. Fuller explanations of

the history of climate knowledge are available in the introductory chapters of the IPCC Fourth and Sixth assessment reports.
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FAQ 1.1: Do we understand climate change better than when the IPCC started?

Yes. Between 1990 and 2021, observations, models and climate understanding improved, while the dominant
role of human influence in global warming was confirmed.

Understanding
Human influence on climate

Energy budget

Sea level budget

Observations

Global warming since late 1800s

Land surface temperature

Geological records

Global ocean heat content

Satellite remote sensing
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IPCC
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0 Suspected

Open
(inconsistent estimates)

Open
(inconsistent estimates)

wmll 0.3-06°C
M 1887 stations (1861—1990)

1 5 million years (temperature)
[ 5 million years (sea level)
160,000 years (CO,)

1955-1981 (two regions)

Temperature, snow cover,
Earth radiation budget

2021
IPCC
Sixth
Assessment

Established fact )
Closed
(inputs = outputs + retained energy)

Closed
(sum of contributions = observed sea level rise)

0.95-1.20°C -

Up to 40,000 stations (1750-2020) -

65 million years (temperature)
50 million years (sea level)
450 milion years (CO.)

1871-2018 (global)

Temperature, cryosphere, Earth radiation budget, CO:,
sea level, clouds, aerosols, land cover, many others
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Global Regional
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